120 research outputs found

    Postprocessing for skin detection

    Get PDF
    Skin detectors play a crucial role in many applications: face localization, person tracking, objectionable content screening, etc. Skin detection is a complicated process that involves not only the development of apposite classifiers but also many ancillary methods, including techniques for data preprocessing and postprocessing. In this paper, a new postprocessing method is described that learns to select whether an image needs the application of various morphological sequences or a homogeneity function. The type of postprocessing method selected is learned based on categorizing the image into one of eleven predetermined classes. The novel postprocessing method presented here is evaluated on ten datasets recommended for fair comparisons that represent many skin detection applications. The results show that the new approach enhances the performance of the base classifiers and previous works based only on learning the most appropriate morphological sequences

    Animal sound classification using dissimilarity spaces

    Get PDF
    The classifier system proposed in this work combines the dissimilarity spaces produced by a set of Siamese neural networks (SNNs) designed using four different backbones with different clustering techniques for training SVMs for automated animal audio classification. The system is evaluated on two animal audio datasets: one for cat and another for bird vocalizations. The proposed approach uses clustering methods to determine a set of centroids (in both a supervised and unsupervised fashion) from the spectrograms in the dataset. Such centroids are exploited to generate the dissimilarity space through the Siamese networks. In addition to feeding the SNNs with spectrograms, experiments process the spectrograms using the heterogeneous auto-similarities of characteristics. Once the similarity spaces are computed, each pattern is \u201cprojected\u201d into the space to obtain a vector space representation; this descriptor is then coupled to a support vector machine (SVM) to classify a spectrogram by its dissimilarity vector. Results demonstrate that the proposed approach performs competitively (without ad-hoc optimization of the clustering methods) on both animal vocalization datasets. To further demonstrate the power of the proposed system, the best standalone approach is also evaluated on the challenging Dataset for Environmental Sound Classification (ESC50) dataset

    Spectrogram classification using dissimilarity space

    Get PDF
    In this work, we combine a Siamese neural network and different clustering techniques to generate a dissimilarity space that is then used to train an SVM for automated animal audio classification. The animal audio datasets used are (i) birds and (ii) cat sounds, which are freely available. We exploit different clustering methods to reduce the spectrograms in the dataset to a number of centroids that are used to generate the dissimilarity space through the Siamese network. Once computed, we use the dissimilarity space to generate a vector space representation of each pattern, which is then fed into an support vector machine (SVM) to classify a spectrogram by its dissimilarity vector. Our study shows that the proposed approach based on dissimilarity space performs well on both classification problems without ad-hoc optimization of the clustering methods. Moreover, results show that the fusion of CNN-based approaches applied to the animal audio classification problem works better than the stand-alone CNNs

    Feature transforms for image data augmentation

    Get PDF
    A problem with convolutional neural networks (CNNs) is that they require large datasets to obtain adequate robustness; on small datasets, they are prone to overfitting. Many methods have been proposed to overcome this shortcoming with CNNs. In cases where additional samples cannot easily be collected, a common approach is to generate more data points from existing data using an augmentation technique. In image classification, many augmentation approaches utilize simple image manipulation algorithms. In this work, we propose some new methods for data augmentation based on several image transformations: the Fourier transform (FT), the Radon transform (RT), and the discrete cosine transform (DCT). These and other data augmentation methods are considered in order to quantify their effectiveness in creating ensembles of neural networks. The novelty of this research is to consider different strategies for data augmentation to generate training sets from which to train several classifiers which are combined into an ensemble. Specifically, the idea is to create an ensemble based on a kind of bagging of the training set, where each model is trained on a different training set obtained by augmenting the original training set with different approaches. We build ensembles on the data level by adding images generated by combining fourteen augmentation approaches, with three based on FT, RT, and DCT, proposed here for the first time. Pretrained ResNet50 networks are finetuned on training sets that include images derived from each augmentation method. These networks and several fusions are evaluated and compared across eleven benchmarks. Results show that building ensembles on the data level by combining different data augmentation methods produce classifiers that not only compete competitively against the state-of-the-art but often surpass the best approaches reported in the literature

    Closing the performance gap between siamese networks for dissimilarity image classification and convolutional neural networks

    Get PDF
    In this paper, we examine two strategies for boosting the performance of ensembles of Siamese networks (SNNs) for image classification using two loss functions (Triplet and Binary Cross Entropy) and two methods for building the dissimilarity spaces (FULLY and DEEPER). With FULLY, the distance between a pattern and a prototype is calculated by comparing two images using the fully connected layer of the Siamese network. With DEEPER, each pattern is described using a deeper layer combined with dimensionality reduction. The basic design of the SNNs takes advantage of supervised k-means clustering for building the dissimilarity spaces that train a set of support vector machines, which are then combined by sum rule for a final decision. The robustness and versatility of this approach are demonstrated on several cross-domain image data sets, including a portrait data set, two bioimage and two animal vocalization data sets. Results show that the strategies employed in this work to increase the performance of dissimilarity image classification using SNN are closing the gap with standalone CNNs. Moreover, when our best system is combined with an ensemble of CNNs, the resulting performance is superior to an ensemble of CNNs, demonstrating that our new strategy is extracting additional information

    Neonatal pain detection in videos using the iCOPEvid dataset and an ensemble of descriptors extracted from Gaussian of Local Descriptors

    Get PDF
    Diagnosing pain in neonates is difficult but critical. Although approximately thirty manual pain instruments have been developed for neonatal pain diagnosis, most are complex, multifactorial, and geared toward research. The goals of this work are twofold: 1) to develop a new video dataset for automatic neonatal pain detection called iCOPEvid (infant Classification Of Pain Expressions videos), and 2) to present a classification system that sets a challenging comparison performance on this dataset. The iCOPEvid dataset contains 234 videos of 49 neonates experiencing a set of noxious stimuli, a period of rest, and an acute pain stimulus. From these videos 20 s segments are extracted and grouped into two classes: pain (49) and nopain (185), with the nopain video segments handpicked to produce a highly challenging dataset. An ensemble of twelve global and local descriptors with a Bag-of-Features approach is utilized to improve the performance of some new descriptors based on Gaussian of Local Descriptors (GOLD). The basic classifier used in the ensembles is the Support Vector Machine, and decisions are combined by sum rule. These results are compared with standard methods, some deep learning approaches, and 185 human assessments. Our best machine learning methods are shown to outperform the human judges

    Finding and Resolving Security Misusability with Misusability Cases

    Get PDF
    Although widely used for both security and usability concerns, scenarios used in security design may not necessarily inform the design of usability, and vice- versa. One way of using scenarios to bridge security and usability involves explicitly describing how design deci- sions can lead to users inadvertently exploiting vulnera- bilities to carry out their production tasks. This paper describes how misusability cases, scenarios that describe how design decisions may lead to usability problems sub- sequently leading to system misuse, address this problem. We describe the related work upon which misusability cases are based before presenting the approach, and illus- trating its application using a case study example. Finally, we describe some findings from this approach that further inform the design of usable and secure systems

    Bringing Statistical Methodologies for Enterprise Integration of Conversational Agents

    Get PDF
    Proceedings of: 9th International Conference on Practical Applications of Agents and Multiagent Systems (PAAMS 11). Salamanca, 6-8 April, 2011In this paper we present a methodology to develop commercial conversational agents that avoids the effort of manually defining the dialog strategy for the dialog management module. Our corpus-based methodology is based on selecting the next system answer by means of a classification process in which the complete dialog history is considered. This way, system developers can employ standards like VoiceXML to simply define system prompts and the associated grammars to recognize the users responses to the prompt, and the statistical dialog model automatically selects the next system prompt.We have applied this methodology for the development of an academic conversational agent.Funded by projects CICYT TIN2008-06742-C02-02/TSI, CICYT TEC 2008-06732-C02-02/TEC, CAM CONTEXTS (S2009/TIC-1485), and DPS2008-07029- C02-02.Publicad

    Automatic Prediction of Facial Trait Judgments: Appearance vs. Structural Models

    Get PDF
    Evaluating other individuals with respect to personality characteristics plays a crucial role in human relations and it is the focus of attention for research in diverse fields such as psychology and interactive computer systems. In psychology, face perception has been recognized as a key component of this evaluation system. Multiple studies suggest that observers use face information to infer personality characteristics. Interactive computer systems are trying to take advantage of these findings and apply them to increase the natural aspect of interaction and to improve the performance of interactive computer systems. Here, we experimentally test whether the automatic prediction of facial trait judgments (e.g. dominance) can be made by using the full appearance information of the face and whether a reduced representation of its structure is sufficient. We evaluate two separate approaches: a holistic representation model using the facial appearance information and a structural model constructed from the relations among facial salient points. State of the art machine learning methods are applied to a) derive a facial trait judgment model from training data and b) predict a facial trait value for any face. Furthermore, we address the issue of whether there are specific structural relations among facial points that predict perception of facial traits. Experimental results over a set of labeled data (9 different trait evaluations) and classification rules (4 rules) suggest that a) prediction of perception of facial traits is learnable by both holistic and structural approaches; b) the most reliable prediction of facial trait judgments is obtained by certain type of holistic descriptions of the face appearance; and c) for some traits such as attractiveness and extroversion, there are relationships between specific structural features and social perceptions
    corecore